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Abstract— Nonlinear parabolic partial differential equation with a concentration dependent diffusivity
in semi-infinite region is solved by an analytical method under a constant flux boundary condition. The
differential equation is transformed to a system of simultaneous linear ordinary differential equations.
The solutions are represented by a series of products of the repeated integrals of the error function.

NOMENCLATURE
A, coefficient;
a, coefficient;
B, coefficient;
b, thickness of sample [m};
D, relative diffusivity, = D(¢)/D(¢:);
D,  diffusivity [m*/h];
E, repeated integral of the complemental
error function;
E, relative change of diffusivity,
= D(¢:)/D(¢ = 0);
F, function;
N;, relative intensity of flux,
= N;b/$; D(y);
N;,  mass flux at surface [kg/m*h];
T, dimensionless time, = D(¢;)t/b?;
t, time [h];
U, dimensionless concentration (equation 4);
U,, dimensionless concentration due to Storm
(equation 42);
v, dimensionless concentration (equation 17);
X, dimensionless length, = x/b;
X, length from surface [m];
z, dimensionless length (equation 17);
z, dimensionless length (equation 42).
Greek symbols
o, exponent;
B, exponent;
¢, dimensionless concentration (equation 42);
n, similarity variable, = X/2,/T;
0, auxiliary variable;
K, parameter for relative diffusivity;
v, auxiliary variable;
¢, auxiliary variable;
T, dimensionless time, =x2T;
@, concentration [kg/m?];
¢;, initial concentration [kg/m®];
% auxiliary variable.

INTRODUCTION

THERE are some reasons to suppose that the moisture
movement within a wet porous material during drying
process may, under certain conditions, be described in

883

terms of the diffusion equation [1,2], in which the
apparent diffusivity, however, is usually a function of
the moisture concentration. The unsteady state
moisture distribution within the wet stock during the
initial stage of drying is, thus, described by the following
nonlinear diffusion equation;

%= 9 {Da—d)} in

o ox| ox
The initial and the boundary conditions for this equa-

0<x<h, t>0.
0x
tion are described by;

(1)

¢=¢;, n 0<x<bh, t=0

o¢
DX =N, =

pm N; at x=0, t>0 @
0
p% _y at x=b, t>0

Ox

Since the restriction of the finiteness in the coordinate
x causes a great mathematical difficulty, the exact
analytical solutions for such a nonlinear diffusion
problem in the finite region are not known to date.
Fortunately, it has been shown that if the flux N; or
the thickness b is sufficiently large, we can approximate
the bounded region as semi-infinite, during the initial
stage of the drying process [1,3]. The system of the
equations, then, reduces to the following nonlinear
diffusion equation in the semi-infinite region.

6p 0 ap| .

T~ = - < s

7 ax{Dax}mO x<ow, t>0

o =d inl0<x<o0,t=0 (3)
o¢
D—=N; at x =0, t>0

Ox

The flux boundary condition in this system of equa-
tions, however, makes it still very difficult to solve by
an analytical method. The only exact solution has been
presented by Storm [4] for such a system. Though his
analysis has been extended to some problems by
Knight and Philip [5], their solutions are valid only
when the diffusivity obeys a certain functional form of
the concentration. Besides, most of their solutions are
not described in an explicit form.



884 MUTSUMI SUZUKI, SHIGERU MATSUMOTO and SIRO MAEDA

In this article, a general analytical solution is pre-
sented for the nonlinear diffusion problem in the semi-
infinite region subject to the constant flux boundary
condition.

QUASI-LINEARIZATION
The Kirchhoff transformation;

1 i
U=—1 D(¢)d 4
i L (¢)do @
and the following dimensionless parameter and vari-
ables*
T = D($o/b?
X =x/b . (5)
D = D(¢)/D()
reduce the system of the equation (3) to the following
nondimensional quasi-linear diffusion equations;

oU U |

=D in0<X<w, T>0

T oxX

U=0 im0 X <o, at T=0 6)
ou )

ﬁ:_l thZO, T>0

where, the dimensionless relative diffusivity D is re-
garded as a function of U. The functional form of D(U)
depends directly on that of D(¢) and may be evaluated
by making use of the inverse of the Kirchhoff trans-
formation. If the apparent diffusivity can be approxi-
mated, for example, by the following exponential type
equation;

D(¢) = A-exp(B- ¢) (7
the dimensionless diffusivity, then is described by
DU)=1-«-U. (8)

The parameter x in this equation is defined by the
following equation;
k=N;InE 9
where
N; = Nib/$;D(¢;)
is the dimensionless flux density and
E = D(¢y)/D(¢ = 0) (1D

is the relative change of the diffusivity. Some examples
of the functional form of D and the definition of the
parameter x for various types of the diffusivity D(¢)
are listed in Table 1 [6].

As seen from Table 1, the functional form of the
relative diffusivity D may, in many cases, be described
by the following series form;

D) =1—a, kU —a(xU)* —as(kUYy — ...

(10)

(12)

The coefficients g; in this equation depend on the

*Though the thickness of the sample b is used in these
transformations, another characteristic length, D(¢)p/N,- or
unit length for example, may be used instead of it.

Table 1. Examples of the definitions of the relative
diffusivities and the parameters

D(U) .

Di¢)
A-exp(B-¢) 1—-k-U Niln k
(A ¢p+B)! exp(—n- U} NAE- 1
(AQ)+B)" (I"K,Lr)n,’(n+1»

Ne(n+ 1117t

functional type of the diffusivity D(¢) but do not
depend on the flux density N; nor the relative change
of the diffusivity E.

Substitution of equation (12) into equation (6) yields

U &Fu

oT  ax?
U
— (kU + a0V +as(cU) + .0 s |

XT3y
U=0 a T=0

au ;’
’(;}Y: — 1 at X = O ,'

Applying the perturbation method, one can casily

prove that the solution can be expressed by
U=U{4+xkU,+&2U3+x3Us+. .. {14)

where, the unknown functions U; are defined by the
following equations;

Uy =201l e - X0
1N Tn p( 4T)

! aZUl
Uzza(fl\alul X2
U _yr U €2U2+U gzi’rl)
3 “"’l,a‘ Vox T T exe
azUl . {15
-‘rtle%"&){—z] po U

The operator & in these equations is defined by the
following integral transform;

Z(fl= 5# J‘OT do J:

(X —&p ) (X
Xp{_f(?—m} AT

(T—0)'"

xf(0,8)ds. (10)
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If we can evaluate the integral transforms in equation
(15) by an analytical or a numerical method, we can
obtain the solution U by making use of equation (14),
but the integration procedures are practically im-
possible. In the following section, another analytical
approach to the general solution is discussed.

SIMILARITY ANALYSIS
Further transformations;

V=xU
1=«>T (17
Z=xX
reduce equation (13) to
oV otV v
EE‘="6“Z—2'—(L11V+02V2+£13V3+... —a?‘
V=0 at 1=0 (18)
a—V= -1 at Z=0.
A

The parameter « in equation (13) is eliminated by the
transform (17). Hence the solution V(r, Z) for equation
(18) should coincide with that of equation (13) for the
case of k = 1, one can readily write;
U(”C, Z) |x =1= V(Ta Z) (19)

Applying the transforms (17), equation (19) becomes;

U(t, Z)le=1 = KU (/K2 Z/K)l.- (20)
Substitution of equation (14) into (20) yields the follow-
ing relations;

Ul(‘ra Z) = KUI(‘C/KZ’ Z/K)

UZ (T, Z) = KZ U2 (T/Kzr Z/K)

Us(t, Z) = k3Us(1/x%, Z/x) 21)

One can easily find that the following general func-
tional form satisfies equation (21),*

UT, Xy=TXF-Fin), j=123,... (22
where, the exponents a and f satisfy
u+p=j (23)

and F is an unknown function of arbitrally similarity
variable 7;

n=n(X?/T). (24)

We may use the simplest and well known definition;
n=X/2T. (25)

Hence the solution U is not always zero at the
surface (X = 0), the exponent B is discarded from

*Functions U; are constant conformally invariant under
the one parameter continuous transformation group (17)
[9]. Therefore, U; can be represented by a product of the
absolute invariant F and the conformally invariant TX?.

equation (22). We finally find that;
Uy(T, X) = T*F(n)
Ux(T, X) = Tl'OFz('?)
Us(T, X) = T"*Fa(n)

(26)
Ua(T, X) = T*°F4(n)
Equations (14) and (26) yield;
U=T%F ) +xTF()+x*T Fa(p)+... 27
and
aUu _ ,
ar = {(Fy=nF)T ™% +k(2F, —nF3)
+K2(3F3—qF3) T +..}2
aU 7 y . ] 1.0
a:{Fl‘f'KFzTOS'f‘KZFaT (28)
+K3FL TS+, 32
aZU n —0.5 " 2# 0.5
a—X—i‘;{FlT +KF2+K F3T

+OFLTIO 4. )4,

Substituting equations (28), (27), (26) and (14) into (13),
and collecting coefficients of like powers of the -par-
ameter x, lead the following simultaneous ordinary
differential equations for F;;

1+2nF{—2F, =0 h

5+2nFy —4F, = a, F, F}

4+ 21Fy —6F 3 = ay(F, F} + F, %)
+a, FiF

Fa+20F,—8F, = ay(F\ F5+F, F3+F3F)) % (29)
+a2(F%F§+2F1F2 /1/)
+a3F?F’,’
J
The conditions at X = 0;
ou
— =-1 30
X o (30)
and at X = oo;
UX->0)=0 (31y
yield the following boundary conditions for F;;
Filp=0)= -2
Fin=0)= F3(n = 0)
=Fin=0=...=0 (32)
Fi(n —o0) = F2(n - o)
=Fin—-w0)=...=0.

This system of the two point boundary value problem
for the simultaneous linear ordinary differential equa-
tions (29) can be easily solved by an analytical or a
numerical method. The dimensionless concentration U,
then, can be evaluated by making use of equations (26)
and (14). The concentration distribution ¢(T, X) can
be calculated by the inverse of the Kirchhoff trans-
formation (4). Some examples are discussed in the
following section.
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EXAMPLES AND DISCUSSIONS

1. Quadratical diffusion coefficient
If the diffusion coefficient is inversely proportional
to a quadratic equation of concentration;

D(@)=(4-¢+B)* (33)
the Kirchhoff transformation
1 ¢i
U@ = N.-bL Dd¢
1-JD 1
= ‘i_ (34)

Ni(\/E—l):;(l_\/D)

yields a quadratic equation for the relative diffusivity;

D= (1-xU)y* |
k= N{(JE~ 1).JL (39
The coefficients g; in equation {12) then become
ay =2
a; = —1 (36)
a3 =a4=...=0.

The simuitaneous ordinary differential equations (29)
and (32) then reduce to the following equations.

4+ 2qF; —2F, = 0

Fi(0)= -2 (37)
Fyi(oc)=0
F3+2nF5—4F, = 2F | F}
F3(0)=0 (38)
Fylo0) =0
F342qF5—6F; = 2(FF5+F,F{))—F3F}
3(00=0
(39

F3(00) =0

The analytical solutions for these equations are
given by (Appendix);
F, =2E,
F; = —6E,+4E,E,
F3 =16E;—12(E3Eq +E, E))
+4E;E;E. +8E;E,E,

(40)

where, E, is defined by the repeated integral of the
complemental error functions as;

E,(n) = i*-erfc(n). 41

Further analytical solutions F4, Fs,... are not
known, but the ordinary differential equation (36) can
be solved easily by numerical method such as the
Runge-Kutta method. Some examples of the numerical
results are shown in Fig. 1. The numerical values of
these functions F; at the surface (y = 0) are listed in
the Table 2. We can evaluate the unsteady state con-
centration profile U(T, X) and the transient change of
U at the surface by making use of these numerical
values and equation (27). The calculated results are
shown in Figs. 2 and 3.

A strict analytical solution has been presented by
Storm [4] for this special case of the diffusivity. The
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1G. 1. Examples of the functions F; for the case of
D(U) = (1 —xUY.

Table 2. Values of F;(0) for

D =(4¢+B)?
F.(0) 1.128379167 (= 2/ /n)
F,(0) 05 (= —1/2)
F3(0) 0094031597 (= 1/6./m)
F4(0) 0.0
F5(0)  —0.002350789 (= —1/240 /m)
Fo(0) 0.0
F1(0) 0.000083957 (= 1/6720 /)

T T T T I T T T T

o Direct numericai
method

PR S

——This theory

KX

F1G. 2. Transient distribution of the dimensionless concen-
tration for the case of D(U) = (1 —kU)?.
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¥ i Storm’s so!ufion/ i
X 05
= i
¥
B
4
| | L | ; ] I
o 2 4 3 B

T
F1G. 3. Transient change of the concentration at the surface
[for the case of D(U) = (1 —xU)*].
Storm’s transformations;
&i h
U, = j JDd¢ !
¢ !

{

1y (42)
z=| —=dx

o JD
{=exp(4-Uy)



A nonlinear diffusion problem 887

reduce the fundamental equation (3) to the following
linear partial differential equation [3].

o ot 8%
o AN; 9z 07
=1 at t=0 (43)
?E. = —AN, at z= 0
0z
The exact solution is given by;

_ 1,200 z.V
{= 1+~T(v +1+x)erfc<2v+2)

x vy v x vy
e £ -5)-Jew{ (53} o

where the auxiliary variables v and y are defined by;

v=AN;Jt |
1= —AN; z.}

The transient change of U at the surface (X = 0)
calculated from this strict solution (44) is also shown
in Fig. 3.

The unsteady state distribution of U(T, X), however,
can not be evaluated from this solution, because
equation (44) is not explicit form in the coordinate X.
Direct numerical calculation of the finite difference
equation for the original equation (6), then, were pre-
formed. The numerical results are also shown in Fig. 2.
Fairly good agreement can be seen from these figures
especially when the dimensionless time x27 is less than
unity.

(45)

2. Exponential diffusion coefficient
If the diffusion coefficient is represented by an
exponential function of the concentration;

D(¢) = A-exp(B-¢) (46)
the Kirchhoff transformation yields
D(U)=1—K~U} @
k=N;-InE.
The coefficients a; in equation (12) then become;
a =1 } 48)
a=ay=...=0.

The solutions for the ordinary differential equations
(29) then become;
F 1= 2E1 }

49
Fz = "—3E2+2E2E0 ( )

These analytical solutions and the further numerical
solutions are shown in Fig. 4 and listed in Table 3.

The transient change of the surface concentration
U(X = 0) calculated from these values is shown in
Fig. 5. Good agreement with the direct numerical
solution can be seen from this figure.

3. The other examples

If the coefficients a; for the power series of the
relative diffusivity (12) can be given, the simultaneous
linear ordinary differential equation (29) can be solved

F(n) / F(0)

F1G. 4. Examples of the functions F; for the exponential
diffusivity case.

Table 3. Values of F;(0) for

D = exp(B¢)
F1(0) 1.128379167 (= 2/,/n)
F1(0) —0.25 (= ~1/4)
F,(0) —0.016840651
F4(0) —0.004261364
Fs(0) —0.001501915
Fs(0) —0.000624417
1.0 - —eet
5 i
% o) ©  Direct numerical method —
b -
x e This work ]
1 L e L l - 1 - 1
o 1.0 20
2T

F1G. 5. Transient change of the surface concentration for
the case of exponential diffusivity.

Table 4. Examples of F;(0)

DWU) (1-xU)"? (1—xUy*? (1 —«U)?
Fy(0) 1128379167 1128379167  1.128379167
F,(0) —0.125 -0375 —0.75

F3(0) —0024384438 0022631360  0.332616746
Fo0) —0009226964 0002834917 —0.083710965
Fs(0) —0.004522333  0.000297401 —0.006208076
Fe(0) —0002554149 0000039061  0.016296072

by analytical or numerical method. Though the general
solutions for these equations can be easily obtained in
the theoretical treatment, the singular solutions for
each equation can be hardly found out especially when
the higher terms of the coefficients are not eliminated.

The numerical method such as the shooting method
with the Runge-Kutta’s algorithm is available in this
case. The numerical results for various cases of the
diffusivity are listed in Table 4 and the transient
changes of the surface concentration U(X = 0) calcu-
lated from these values are shown in Fig,. 6.
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L [ L T T -1 1 T 1
~ I 7
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F1G. 6. Examples of the transient change of the surface
concentrations.
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APPENDIX

We are concerned with the function E,(y) which is defined
by the following recurrence relations;

d
Eq(n) = _d'? E, (g, n=—-1,012,...
, (A.1)
E.. () = = exp(—n?).
Nz

This function coincides with the repeated integral of the
error function when »n is positive integer or zero,

(A.2)

If these relations are extended to negative n, E/s are
represented by the following exponential functions:

E.(n) = i"erfc(n).

2 h
E_(n) =~ exp(—7n’)
\,’T[
4 2
E_»(n) = ——1n exp(—n°)
VT - (A3
4 2 8 2 2
E_3(n) = — -~ expl—n")+—=n" exp(—n7)
/T VT

It can be easily proved that

2nE, = - 24E,_, +E,.; {Ad)
and that
E; +2qE, —2aE, = 0. iAS
From these relations, it can also be dertved that
d? d ) -
d;lz (E,,Eq)+2115';(EPEQ)~2(p+q)[‘.,[;q =2E, (E. . (Ao
and that
d? d i
e (E,E,E,)+2y @(EquEr) —2p+q+rEEE,
=2AE, E, (E,+E, EE, | +EE, _ E ). (A7

The general solution for equation (37) is then described by:
Fi=A-E{n+B-E({(-n (A8)

where 4 and B are constants.

Singular solution for equation (37) is zero. The boundary
conditions then reduce equation (A.8) to the particular
solution:

A9)

Then equation (38) becomes
Fi4 2qF, —4F, = SE.E. . (A10)
The general solution for this equation is represented by
A-E(n)+ B-Ex(—n). (A1D

Equation (A.6) shows that the singular solution of equation
(A.10) is represented by

4E, E,. (A
Then, the particular solution satisfying the boundary con-
ditions becomes:

F, = —6E,; +4E,E,. (A3

Equation (39) then becomes
3+ 2nF3 —6F,
= —24E;E., +E,Eo) +8(E.E \E_, -2E,E.E ;i

+16(E\ E E_; +E EcEg + EEoE ). (Ald
The general and singular solutions are
A-E3n)+B-Es(—n) (ALLS)
and
—12(E3Eo+ E,E )+ 4E,E, E, +8E,E(Eq.  (A.16)

The particular solution which satisfies the boundary con-
ditions is
Fy = 16E; ~ 12(E3Eq + EL E)

FAE,E,E ., +8E,E By (ALLT)

If we repeat the same procedure. we may obtain the
further analytical solutions.

NOUVELLE METHODE ANALYTIQUE DE RESOLUTION D'UN
PROBLEME NON LINEAIRE DE DIFFUSION

Résumé— Une équation parabolique et non linéaire aux dérivées partielles, avec une diffusivite dépen_dgnt

de la concentration est résolue par une méthode analytique dans un milieu semi-infini avec une condition

aux limites de flux constant. L’équation est transformée en un systéme d’équations différentielles ordinaires

linéaires. Les solutions sont représentées par une série de produits d’intégrales répétées de la fonction
d’erreur.
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EINE NEUE ANALYTISCHE METHODE ZUR LOSUNG EINES
NICHTLINEAREN DIFFUSIONSPROBLEMS

Zusammenfassung— Die nichtlineare, parabolische partielle Differentialgleichung mit konzentrations-

abhingigem Diffusionskoeffizienten wird mit Hilfe einer analytischen Methode fiir einen halbunendlichen

Bereich mit konstantem Massenstrom als Randbedingung gelost. Dabei wird die Differentialgleichung

in ein System gewohnlicher, linearer Differentialgleichungen transformiert. Die Losungen werden durch
eine Produktentwicklung aus wiederholten Integralen der Fehlerfunktion dargestellt.

HOBBIW AHAJIMTUYECKW METO/ PEIIEHUSA HEJUHEWHOWN 3AJAYUN
JNPDY3INU

Anmnoraiua — JlaeTcs aHAIMTHYECKOE pellicHue HenuHeltHoro mapabomumveckoro auddepeHManb-

HOTO YPaBHEHMS B YaCTHbIX NPOM3BOIHBIX C 3aBHCALUMM OT KOHUEHTpauuu koddduumerToM aud-

¢dy3uu nns nony6eckoHEYHOU 00IaCTH MPH MOCTOSHHON BEeNMYHMHE MOTOKA HA rpammue. PaccMaTpu-

BaeMoe auddepeHLMaNbHoe ypaBHEHHE NpeoOpa30OBLIBAETCA B CHCTEMY OOBIKHOBEHHBIX JHHEHHBIX

B3aMMOCBA3aHHBIX AuddepeHUUANBEHEIX ypaBHeHHH. PelueHHs NpencTaBiieHbl B BHOE PALOB, CO-
CTOSAILUMX M3 NPOM3BEACHHH MHOTOKPATHBIX HHTErpaioB OT GYHKIHH OLIMGOK.
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